

1

The redesign of an existing intranet system and its effect on

usability and user experience

Sid Jotsingani

11th August 2014

Abstract

My project is to improve an existing intranet system by adding new and innovative functionalities to

provide solutions to existing problems. The goal is to improve overall usability and to create a better

user experience in the hope of improving internal business practices by employees of the company.

This paper covers my proposed changes to their system which include a new profile management

concept, a mapping application to provide a visual overview of users locations, a system to submit

applications and convert the data to graphs, a yet to be completed attempt at retrieving academic

research papers, and a redesigned theme for the intranet system along with my reasoning behind

design decisions. Testing in the future would need to be done to determine whether the changes I

propose have any impact on the usability or user experience of the system.

Acknowledgements

I would like to thank the following people for the continuous support throughout this project:

Dr. Sulo Shanmuganathan – Industry Supervisor.

Opus International Consultants Ltd.

Dr. Xinfeng Ye – Academic Supervisor.

The University of Auckland

Dr. Sathiamoorthy Manoharan – Information Technology Coordinator.

The University of Auckland

Introduction

Opus International Consultants is a multi-disciplinary infrastructure consultancy firm with over 3,000

employees in over five countries. They are focused in 8 major sectors such as buildings, transport,

water, energy and more. Opus deals directly with clients and most of the projects are completed off-

site at various locations depending on the client’s requirements.

The current intranet system is used to manage profiles of all the employees, to search and find

contact information of other employees and to view internal documents from inside the company.

However the usability of the system is quite low, and performing what are meant to be trivial tasks

such as editing one’s profile can turn out to be a very complex task. Along with the complexity of the

system, it is missing some pieces of functionality that the company wants implemented in order to

automate and simplify some tasks that are normally performed manually by employee.

An issue that this project addresses is that user’s do not keep their profiles maintained, including

keeping their current location around the world up to date. This is quite an important aspect which

2

is needed in a firm where users are constantly travelling between different sites and locations. In

order to improve this practice, the design of the intranet needs to be improved without being too

complex of a change where users have to re-learn the system.

Research needs to be done on how usability can be improved in the current intranet system without

increasing overall complexity, and to understand what functional and design decisions need to be

made in order to enhance user experience in the current intranet system?

A quick note about the project

My supervisor and peers at Opus have been very supportive of my work so far. One of the issues

that arose earlier in the process of this project is that there currently is (or soon to happen) a

migration going on from Opus’s current intranet system to a SharePoint solution. What this meant

for me is that my academic supervisor and I had to discuss whether I am developing for the older

system which only has a limited lifespan left or whether I am to wait and develop for the newer

SharePoint system. However since then, the IT team has kept any changes that need to be done to

the intranet on hold and I no longer have an idea or timeframe as to when the migration is to

happen. However due to this being an academic project we had to keep development moving and so

any work done so far has had to be done locally on my own webhost and Apache server and not on

Opus’s actual systems.

This may require changes later in the future (possible significant changes) when migrating – but at

least the fundamental aspects of the logic and design will remain the same. I also acknowledge that

any of the work I do may not be possible to migrate on the Opus’s servers anytime soon (assuming if

it even happens this year), but it does give us something to show to the IT team about what we are

able to improve on (since they are not in any hurry) and can hopefully convince them to pursue or to

allow us to work on their current intranet systems for them. Along with all this – I have still not been

able to meet the IT team in Wellington yet and nor have I been able to look at how the backend of

the intranet is actually working, what the infrastructure is like and have a confirmation about how

the backend of the intranet is structured or what it runs on.

Despite the fact a lot of the stuff I have developed may need to be modified and migrated so it will

work on the newer SharePoint system, the project is still and will continue to move forward (at least

locally).

Related Work

The goal of this project is to improve the usability in the system and to enhance user experience of

the intranet system. Usability and user experience are often used interchangeably, however there is

a distinction between these two terms. (Bevan, 2009) writes that a survey at Nokia stated that User

Experience was perceived as being usability plus anticipation and the pleasure from the usage.

(McNamara & Kirakowski, 2006) state the three areas of concern in Human Computer Interaction

are Functionality, Usability and User Experience. They define usability as a “characteristic of the

interaction between the user and the product” and state usability answers the question “can I make

the product do what I want it to do”? This differs from their definition of user experience which is

“the wider relationship between the product and the user in order to investigate the individual’s

3

personal experience of using it”. User experience should answer “how the person felt about the

experience, what it meant to them, whether it was important to them, and whether it sat

comfortably with their other values and goals”.

Both Bevan and McNamara & Kwiatkowski agree that user experience links with usability plus the

emotional response attached after using the product. This is also quite similar to what Domain7 – a

group of designers from around the world, say about usability and user experience. They state

usability plus user experience are both essential to the success of a website/application. Usability is

about task-based interactions and is allowing something to be done easily and intuitively whereas

user experience is how a person feels when they interact with your product and their emotional

connection to the task. What this means in the context of the project, is just because the website is

easy to use – it doesn’t mean it that users are enjoying using the site or are having a good

experience. The intranet must be easy and simple to use (usable), but must be designed in such a

way that it is delightful and a pleasure to interact with, and that there are no aspects that give the

user frustration or inconvenience.

One of the most known authors in the world of Human Computer Interaction is Jakob Nielsen. In his

research, (Nielsen, Usability 101: Introduction to Usability, 2003) define usability as “a quality

attribute that assesses how easy user interfaces are to use”. In the same paper he also states that for

intranet systems usability relates to employee productivity. So if an employee has to spend time

deciphering their next actions, then that time wasted is money lost by the company without any

work or productivity accomplished. (Nielsen & Molich, Heuristic evaluation of user interfaces, 1990)

also list out 10 usability heuristics for interface design. These heuristics are meant to solve common

problems that people often face in interaction design. They are:

 Visibility of system status

 Match between system and the real world

 User control and freedom

 Consistency and standards

 Error prevention

 Recognition rather than recall

 Flexibility and efficiency of use

 Aesthetic and minimalist design

 Help users recognize, diagnose, and recover from errors

 Help and documentation

The proposed work, completed till date will be using Neilson’s heuristics as guidelines for some

design decisions.

(Hinchliffe & Mummery, 2008) performed a similar task of attempting to improve a health

promotion website – where the main goal was improving usability. They broke down their usability

improvements into 6 different categories. The Design which was about changing actual visual

elements; the feedback which was the response the system gave; the format such as entering dates

in the same format consistently throughout the website; The instructions given to the user; The

navigation and how easy it was for a user to get back to where they came from; And the

terminology. Upon improving these 6 categories they found an overall improvement in Usability.

There are again similarities between the changes performed by Hinchliffe & Mummery and Nielsen’s

Heuristics. The instructions representing the help and documentation, the terminology relating to

the match between the system and real world, the navigation relating to the visibility of system

status and so forth. This again indicates that Nielsen’s heuristics are in fact a reliable method to

4

asses and increase usability of a system and that usability can be improved on any website by

following a set of guidelines.

A recent book by (Lal, 2013) states that the best interfaces are those which have a minimum design,

simplicity, accessibility, consistency, feedback, forgiveness and are user driven. This also matches

with what Nielsen also states in his heuristics, 10 years later. The core concepts appear to still be the

same, what seems to be changing is how designs are expressed and our perception of what consists

of good design.

Figure 1, on the next page shows the top most English websites sites on Alexa.com (Alexa, 2014).

After looking at each of these websites in detail, I aggregated a list of design patterns that were

similar between most of the sites. This list shows showed some common design trends that are

slowly emerging from my observations:

 The use of white and grey to distinguish foreground and background. Most of the sites are

using grey as either the body background/navigation bar colour, and using a white

background for the main content of the site.

 “Card styled” layouts using squares and rectangles filled with the main content. These cards

generally have sharp corners, thin margins between other content and contain a

combination of text and images.

 Shadows to give depth to the main content. Despite moving away from gradients and using

single “flat” colours, most of the areas that contained content (cards) had shadows to make

them appear as if they are sitting “on-top” of the background.

 Highlights/outlines on input boxes when focused onto them. This is a form of feedback when

clicking inside a textbox to show which box you are typing in.

 Larger than the default sized input boxes with large fonts. Most of the input boxes had

modified CSS to make them larger than the HTML default size, along with larger font than

the size of the text used in the body content and paragraphs.

 Some form of separation with the logo and search, and the rest of the content. The logos

mostly sat in the top left corner with the navigation horizontally across or vertically down on

the left hand side in some cases. There would either be some break in colour, border lines,

or by padding to break where the navigation ends to where the content starts.

 Consistent colour schemes and styling throughout webpages. Each website had their own

set of colours they would use throughout on multiple elements. The layout would also be

consistent throughout pages. An exception was normally the homepage which may have had

a different layout – but which still used the same colours and styles.

5

Figure 1, Top Alexa.com websites from left to right: Facebook.com, Youtube.com, Amazon.com, Yahoo.com, Google.com,
LinkedIn.com, Twitter.com, Wikipedia.org

6

On most of the researched websites, an emerging trend is the use
of the “card-style” layout where the overall design is flat – yet
depth is perceived. This combination of a card layout along with
flatness is not only emerging in web technologies, but is also
advancing in mobile design too. Apple overhauled their layout in
2013 with the release of iOS7 to a flattened layout – yet added
depth using parallax. Windows 8 and Windows Phone 8 use a tiled
layout with and have adapted a flatter style of icons too. Whilst
Android has been using flat card style layouts for some time now,
and recently with the announcement of “Android L” has changed
the design to “material design” which follows the idea of cards
with depth and layers (again using shadows).

This increase in popularity in flat design contrasts skeuomorphic
design which came into play when the term Web 2.0 (and
understanding what it was about) gained popularity in 2004
(O'Reilly, 2005). Until about 2010 iconography was focused on
skeuomorphism, meaning making icons look as close as they can
to their real life counterparts. This meant the use of gradients, 3D
perspectives and excessive use of shadows to give it real life
characteristics.

As shown in Figure 2 design has changed since then to now become flatter.
And ever since more and more people and firms have been adapting to this
new flat design style which even today is still gaining in popularity.
However as (Turner, 2014) points out, one of the biggest drawback of flat
design has to do with icons losing meaning, and that flat icons often do not
offer feedback when clicked or hovered upon. From a usability perspective,
this lack of feedback is a step backwards. Neilson states there should be
visibility of system status – which includes providing feedback on a
performed action in a reasonable amount of time. It also violates one of

Shneiderman’s8 golden rules of principle design which states an interface should offer informative
feedback (Shneiderman & Plaisant, 2010). So despite having a flat design – some type of feedback
should be given to a user, even when using flat icons in order to maintain a certain level of usability.
This is a balance that needs to be achieved throughout the entire design process.

(Pozin, 2014) from Forbes.com mentions that the fact that responsive web design is the new

emerging trend of web design. He says we need to embrace higher resolutions, so from a web

design perspective we need to make our websites more responsive and fluid. Long gone are the days

of fixed size. But along with responsive web design he mentions about how the other biggest change

is that design is becoming flatter and is something we need to adapt to.

The Design & Theme

When deciding what design elements should be changed for the current intranet system, I decided
to have a look at what Opus’s current public facing website looks like. One of the first things which
stood out was the colours used. The content background was a light shade of grey, with text a darker
grey colour sitting on top. The text for any important information (main headings and the current
navigation item) was all uppercase, and in a bold red font. Other headings (sub-headings, and other
navigation items) used the same font but in a darker grey colour. The use of red was what was
standing amongst the shades of grey, and that was being used for any important information.

Figure 2, A change in design trends to flat
logos

Figure 3, iOS7 has a flat
design, yet uses shadows
behind flat icons in order to
perceive depth

7

Apart from the colour scheme, the logo
was placed in the top right corner with
a horizontal navigation bar below it
(which fits in with other common design
trends). The text used throughout was a
large serif font, and the design was
overall very flat. The background colour
was not a standard white as most
websites use, but instead a lighter
shade of grey – (which I believe still
works quite well since the text still has a
large contrast with the background
colour). Overall the website was very
pleasing to look at. When this is
compared to a page from the current
intranet system, the differences
immediately become visible.

The two screenshots below are from the firms current intranet system. The first is a screenshot from

the profile page of another user, the second being the results of a search for an employee in the

company. The first noticeable difference is the lack of consistency between the two pages itself –

despite being a part of the same intranet. The logo and header has remained the same, however the

navigation bar has changed completely upon searching for a new user. Secondly the layout of the

main content has changed quite drastically as well in terms of width. Where in the first screenshot

the content is centered inside a beige box that has a fixed size, in the second screenshot the content

takes up almost the full size of my screen (despite still being a fixed size), and is placed inside the

background itself – rather than inside a content box like on the profile page. Both these pages had

layouts of completely different widths – one looked portrait, whereas the order looked landscape.

One of Nielsen’s principles was about consistency and standards. This is something that will need to

be addressed in my implementation ensuring that there is consistency between the pages. Secondly

Nielsen also mentions about aesthetics and a minimalist design. Compared to the website

counterpart, the intranet interface looks less aesthetically pleasing and there is a lot of crammed

content especially on the profile page where there is a lot of information crammed by the name.

Figure 5, A screenshot from the profile page
 from Opus's current Intranet system

Figure 6, A screenshot of search results from Opus's Intranet

Figure 4, A screenshot of the homepage from Opus’s public website

8

Figure 5, The first modification to the existing
intranet including a grey background and bold
red headings

Figure 6, The next modification including sharper
corners, new colours and a sans-serif font

Figure 7, The third modification cycle consisting of
a changed navigation bar

One of the design choices made during the design process

of the intranet, was to most importantly bring consistency

between pages. Not only that, I also wanted to bring

consistency between the intranet and Opus’s website so

that employees can recognize the system easier and

possibly have a better understanding of it. This meant

bringing certain elements over to the intranet system such

as bold red headings, a light grey background and a

minimalist navigation system.

In order to do this the colours used on the website were

sampled and then used on the intranet page. The heading

colour was now a darker red rather than black, and the

background was also a lighter shade of grey. As you see

on the right how the design changes – it is barely

noticeable, but it was a start. These changes can be seen

on the left.

The next biggest change came when redesigning the

content box. First of all the background colour was

changed from beige to a darker shade of grey to better

match the website background colour. The edges of

the boxes and input buttons were squared off rather

than being rounded. Sharp edges were more common

than rounded corners in recent design patterns (such

as Google card layouts, Yahoo news categories,

Facebook news feed items, and LinkedIn updates all

using square rather than rounded corners). The square

corners also seemed to be a better match fit due to the

fact the Opus triangle (which appears on most pages)

has sharp corners and not round ones. The background

image in the content box of the red triangle was

removed (temporarily). The font was also changed to a

much more legible and common, sans-serif font, Arial

rather the previous serif font, Georgia. The use of Arial

does not follow what’s on the Opus website, but was

chosen because of its easy readability at small sizes,

simple design and it being acknowledged as a CSS safe

web font to use for web design (W3Schools). The

screenshot on the right shows the changes after this.

As you can see on the left, the navigation bar was then

changed to better match that of the Opus website. A

similar horizontal layout was used. The reason for this

was to enable users to recognise the navigation layout

that they may be familiar with from the Opus website, to

bring consistency between the intranet and website, and

to better suit the common design pattern of keeping the

navigation aligned to the left rather to the right. The font

9

Figure 9, The proposed theme with no content

used for the navigation is not the same as the Opus website, since the font used there was a

premium font called “Knockout”. Instead a free font called “League Gothic Regular” was used. In the

future, this font can be replaced with “Knockout” if permission is given by Opus to use it. Instantly

after these changes, the layout seemed to better match the Opus website. However even at this

point it felt like some things were lacking and could still be improved upon.

The next changes that were made were made based upon looking at the other websites above, and

the original intranet page rather than the website. This was to bring more design elements that were

seen as contemporary whilst at the same time try and retain the existing look and feel of the original

intranet page so it did not seem like a completely overhauled design change in the system that may

frighten some users.

The design was now flatter and was better suited

to modern design patterns. However with most of

the top sites, some form of shadow was still being

used to distinguish foreground from background.

A box shadow was added around the content box,

to give it depth as if it were sitting on top of the

background. The width of the content box and

some elements on the page were also modified to

be more fluid and to change according to how a

website scales for different sized screens. The

logo and navigation was aligned with the left side

of the content. Also the layout of elements. The

background of the content-box was also changed

to be transparent, the red Opus triangle was also

added back which was made using pure CSS

rather than an image with it’s z-index set behind

the content box. This also helped give the effect

of depth using a flat design. The image on the

right shows the template minus any content (that

will vary per page) for my proposed solution. To bring consistency this will be used on every page

filled with content inside the grey area. The style also follows the card-style layout used on most of

the top sites of the web. The figure on the left

shows the layout of the profile page using the

new theme (Note: the layout of the content for

content box has changed compared to the

original web page).

The design here also compromises some

features which are not directly visible in a static

screenshot that have been embedded within

the theme such as a lightbox (pop up window

inside the current page) when needed, and the

use of some JQuery animations as an attempt

to enhance user experience by making the

overall feeling of using the site “fun” and

making the experience a joyful one.

Figure 8, The profile page with the new proposed theme

10

One of the major differences between my

proposed design above and common design

patterns, is that the background I am using

for the main content is not white. Most of the

top websites use a white background for the

content followed by a grey colour for the rest

of the background. The left figure shows an

alternate version of the theme using a white

background for the content as opposed to a

dark grey one. The reason for the dark grey

was used, was to better fit the Opus website

color-scheme that did not contain any white

at all for any element. Secondly having the

darker background for content and lighter

background for the body was a closer match

to that of the original opus intranet page, so it

did not look like a significant difference. I do

not know which of the designs will be

perceived as more usable or which may

provide a better user experience, so I may

have to conduct some further research or

testing on users in order to deduce whether the white or grey background looks better and whether

the new design has improved usability and user experience overall.

I have attempted to cover as many of Neilsens Heuristics as I could in my proposed design:

 Showing the system status at any given point by giving feedback on actions such as hover on

links, adding loading bars for certain events and the use of modal messages upon errors or

successful actions (See Implementation section on Technical Funding Applications).

 Matching between the system and the real world was something I could only do to a certain

extent. However this seemed to be quite fine to begin with. I am using the same text that

was on the original intranet pages and so I had no control over the jargon.– However when it

came to me using natural language rather than jargon, any messages I was showing/display

to the user are using simple non-technical terms. In the future though, I may be looking at

adding icons to each of the navigation bar items and address this issue in further detail.

 User control and freedom in the form of the ability to reverse an action such as close a

lightbox when not needed, and the ability to modify content on the page itself. (See

Implementation section on Profile Management)

 Consistency and standards is being addressed by creating a single theme that is to be used

amongst different pages, along with keeping some design aspects of the intranet similar to

the website. Modern standards have also been used throughout such as the use of shadows.

 Error prevention by red modal boxes containing the error in a simplified language upon an

incorrect action such as uploading an image file as opposed to a PDF (See Implementation

section on Technical Funding Applications).

 Recognition rather than recall – most of the common actions have been kept in the same

location between pages (navigation and footer). However in future iterations of the design,

a more prominent and improved help system could be implemented to help new users

understand the system better.

Figure 10, An alternative to the current theme where the
background colour of the content box has changed to white

11

 Flexibility and efficiency of use - there are no shortcuts implemented for experienced users.

Both novice and experienced users go through the same interface to accomplish tasks. In the

future some functionality could be added in order to assist more advanced users.

 Aesthetic and minimalist design – the proposed design appears to have been simplified

down from the original, however there is always room for improvement. There are very little

frills (such as the Opus triangle), apart from the core elements on the page.

 Help users recognize, diagnose, and recover from errors – all error messages give a clear

indication of what the user did wrong and how to fix the error. Also any errors in inputting

data are immediately highlighted in a red colour around the border of the input box.

 Help and documentation – currently only the help section which is accessed in the footer. In

future iterations of the design a more prominent and improved help system could be

implemented on a page-by-page basis to help new users understand the system better.

When I started looking into usability and design, what I kept reading about responsive web design

and the enormous advantages of creating websites for responsive design. All the articles and

journals contained information about the responsive web. However after reading some papers – I

soon learnt that fluid web design and adaptive web design are also have some similarities to

responsive web design. Although there is a fine difference between them – I wasn’t really sure which

one I was designing for.

As (Carlos, 2013) states in his book Responsive Web Design with jQuery, the difference between

responsive layouts and. Fluid Design is adjusting the dimensions of elements but doesn’t vary the

layout structure – you generally use percentages for all the elements. Adaptive design changes the

layout for different resolutions – but its more like having a bunch of static layouts and is not fluid

(Davison). Finally responsive web is having fluid layouts while also changing the layout structure for

devices with different resolutions. An example for responsive is where all the content moves to a

more vertical layout on mobile phones (since phones are larger vertically), and horizontally on

traditional monitors (since displays are larger horizontally). (Campbell & Shelly, 2014) raise a good

point about static layouts – that static layouts are always consistent no matter what the resolution is.

However the drawback here is that for screens with extremely small or large resolutions it may

appear to small or too big.

Now the question was what was I designing for? The current Opus layout was a static layout that did

not respond to any changes in resolution. The layout style I had begun working on and will continue

in the future is a fluid layout. My justification behind this choice is that adaptive layouts appear to be

less responsive to changes compared to fluid and responsive layouts since they do not respond to

changes as well as those, whilst static layouts do not respond at all. Although a responsive layout

consists of a form of fluidity layout plus changes in structure (and is therefore generally seen as

being the better choice) – in the scenario of this project – the Intranet (at least currently) will only

ever be accessed on desktop/laptop devices with larger screen resolutions. This is because

connectivity to the intranet is only possible through a wired Ethernet connection – that is only

available on desktop/laptops or larger tablets. Responsive layouts are ideal for scaling a website

down for mobile browsing, which isn’t needed in this case in this scenario therefore a good fluid

layout seems to be the best choice. Nevertheless in the future if a responsive layout is needed – one

can always adapt the fluid layout into a responsive over time.

The updated styling I am using throughout all the webpages has a larger size for content than the

original did. The main content box width has increased from 625px to 880px – however for devices

with not as much screen width, the content box size decreases down to a minimum of 625px. This

12

feature can be emulated by re-sizing the window down to a smaller content size. This fluidness was

achieved using the CSS2 property of max-width.

This same principle was applied to many different elements, such as the profile picture on the page
in order to achieve a low level of fluidness and to also ensure these elements have an upper limit so
they do not scale too largely.

The Implementation and Interactive Design

Throughout the process from ideas to prototypes has all been done using an agile methodology. I

would go to meet my industry supervisor almost every week to find out what was needed. Upon

gather that information I would search for ways to accomplish what my supervisor wants, and try

and find solutions to those problems myself. I did not create many mockups or sketches. Instead I

would make something that I felt best fitted what my supervisor wanted and would create a quick

semi/fully-functional prototype of it. During my next week meeting I would then show this prototype

to my supervisor and gain feedback on how to improve it. This process repeated over many

iterations. I would also not be working on a single piece of functionality at one time, generally I was

working on two-three different parts of the project at a single time focusing on one the most, while

doing minor revisions on the others.

Research publications:

One of the functionalities that my academic supervisor wanted to add to the existing profile pages,

was the ability to view a list of publications and research papers that have been written by the user

you search for. My supervisor wanted to implement this by adding a button that links to these

publications at the bottom of the profile page. Hosting the publications may not be an option due to

copyright and licensing issues, so to solve this problem the page would simply contain links to the

articles which are hosted on the scholarly publication website.

The bigger problem though, is currently users are currently not in the habit of updating their profile

pages. So users would not have any incentive to fill up this information and keep it maintained, even

if we were to add these additional fields of information. So to overcome this, the plan was to gather

this information dynamically off internet and automatically attach this information to the profile of a

user (without requiring them to enter any details themselves). This would be done as a scheduled

task in the background to ensure information that is retained is up to date. The source to collect this

information is to gather it from a scholarly publication site.

(Falagas, Eleni, Malietzis, & Pappas, 2008) conducted a comparison of scholarly websites. Their

results stated that Scopus missed out on older articles whereas Web of Science didn’t. However

Scopus had a larger coverage of articles than Web of Science did and more than double the number

when compared to PubMed. PubMed was excellent for producing biomedical articles. Google

Scholar was good at finding many results (but that also included publications which may be of a

lower standard) – but covered all range of topics.

Initially the plan was to start off retrieving results from one publication source by iterating through

every user in the Opus Database and figuring out if they had written any publications. Additional

parameters such as the country they are staying in would be used to identify the correct user on the

publication site. Then in the future we would expand to later collect data from multiple sources,

13

Figure 11, The inital publications search page

aggregate them together and remove duplicate results. This would have ensured we collected most

of the publications available without requiring to do anything themselves. However many limitations

soon kicked in upon further research into the solution.

PubMed and Google Scholar both did not offer any API’s to access resources. Web of Knowledge

requires a large fee to access their resources. Only Scopus (which includes Science Direct) had a free

API, but that too was limited. Their paid API version again was a significant subscription fee. Upon

further investigation into other academic databases I discovered smaller ones such as CiteSeer which

supports OAI (Open Archives Initiative) but is limited in size and has no public API that can be used

for search. JournalSeek and BASE have no API at all. After taking all this into account I decided I

would still try to see if I could gather resources using Scopus’s free API access – since it still was a

significantly sized library. I had to register and had to submit the IP address that I would be using the

API from. In the future this would have been something that would need to be addressed, since it

would be a tedious process adding every single IP address in the company to the list of allowed API’s

on Scopus’s website. A better solution would be to make all API requests route through a single

proxy that handles all communication with Scopus’s servers. This would have been needed to be

implemented in the future.

The initial prototype used a search box to search

for an author and using REST retrieve a list of

publications written by the entered name in a

JSON format. Due to some search limitations with

the free API, a lot of instances when I was

searching an author I was getting an empty result

set. So to overcome this issue, if the first and last

name combination could not be found then a

second search is automatically repeated using the

initials of the authors first name and their full last

name. Although the set received back would be

substantially bigger, it at least was a quick and

simple fix to what potentially was looking at being

quite a large problem.

The received information is parsed using PHP as shown below

$results = $url."&query=firstauth(".$firstName.",".$lastName.")";

$file = file_get_contents($results);

$json = json_decode($file, true);

Depending on whether it’s a Journal or Article the appropriate formatting is applied. The problem I

realized upon creating this is that people have the same name – so we need a way to identify

whether the name searched maps to the correct person in real life – e.g. Is John Smith the correct

John Smith who we searched for in real life. A proposed solution to this that would require

minimum input from the user, is to use filters (e.g. entering a country to narrow down results) plus

producing all the results from the search to the user. From these results let the user select anyone

article that they have written themselves. With the article they selected, we would get the Authors

ID that we could then use to search for more publications from that author.

I added checkboxes next to each search that were to be used to select which entry was written by

the user themselves. I then animated the process of display more publications using JQuery.

14

However what I realized is despite the documentation for Scopus claiming that you retrieve an

Author ID with each result – in the free version of the API you do not – so even if a user selects a

publication they have written – we cannot get their ID to find more publications by them. Secondly

searching by Author ID is also not allowed in the free version of the API.

The above limitation became a real issue and discussions were made about workarounds to the

solution, but nothing seemed to be a viable option. This was the last bit of development that was

done for the publications search till date. Another option was looked into which was scraping

webpages to gain additional information or results. Scholar.py is a python based scraper for Google

Scholar that when running locally, will scrape any results from Google Scholar, and acts like an API to

your client side application. This however was not a viable solution again as web scraping was a part

of Google’s Terms of Violation, and for a commercial organization is not an ethical option to do.

Secondly if the website/structure of Google Scholar results change – this may break functionality in

the web scraper that will need to be patched before it can be used again. Therefore this piece of

functionality was put on hold and still remains like that till date.

Maps:

As mentioned earlier employees do not maintain their profile, and since they may be travelling a lot

this is a bad practice if physical locations are not updated. One of the solutions that was looked into

was the creation of a mobile application where one’s location is automatically updated and saved on

the intranet, or a mobile application to allow users to check in to the system. This was rules out very

early due to the constraints of the intranet only being accessible internally and the fact that a mobile

Figure 12, The final research and publications Search page

15

application is not part of the scope or requirements for Opus. Instead a solution was to implement a

visual map where the location can be viewed rather than just plain text, and a method to simplify

the process of saving one’s location, in order to encourage location mantanainance.

Along with the above the map also required additional features that needed to be implemented was

the ability to display multiple sets of map markers on the map as an overlay for different groups of

users, to be able to geocode a location into a latitude and longitude, to be able to view ones current

location on the map, and possibly to get directions between two points in the future. I also raised

the point that the ability to cluster points together on the map would be needed at such a scale if

many employees are in the same location, the map would look very busy if there were 100 points all

in roughly the same area.

There are many mapping services available to use from the internet such as OpenStreet maps, Bing
maps and Google maps. When it came to a comparison between such services, (Cipeluch, Jacob,
Winstanley, & Mooney, 2011) found no clear winner between either of the services and stated it
was down to one’s personal requirements. After researching online I created a table showing the
features required for the project along with what each Vendor provides.

 Google Maps Bing Maps OpenStreet Maps

Clustering of Map
Markers

Yes with plugin Yes with plugin Yes with plugin

Gecoding of
Information

Yes Yes Yes

Group markers
by category

Yes Yes Yes

Free API Yes Yes Yes

Routing between
two points

Yes Yes Yes with plugin

The table above summarizes the functionality available between different mapping platforms. All the

services offered all the features and functionality that were required for this project. After using all

the three different mapping applications, I also found them to be quite similar in terms of aesthetics

and functionality. The final decision was made to go with Google Maps due to the fact that it was the

most popular option in terms of mapping software used online. Google maps is the most popular

standalone mapping application and also the most popular embedded map on used online with 68%

of mapping application users (BuiltWith, 2014). Therefore with such a majority it made sense to go

with the mapping software which users would be most familiar with which they most likely have

possibly used either on the Google Maps website or embedded in another website. This past-

experience (if any) would allow users to recognize the tools and controls used to operate the map .

This would hopefully make the map more familiar and easier to use (compared to any other

competitor mapping application). Secondly the API has a free limit of 25,000 map loads per day

which should be sufficient for a company the size of Opus, (Google, 2014).

The maps page embeds the Google Maps HTML5 canvas which uses JavaScript to manipulate the

canvas. After successfully embedding the application the first thing I implemented was the ability to

show your own location on the map. Most mobile devices have a GPS built in to do this – however

for an intranet system that is being used entirely on laptops, this is not a possibility since laptops do

not contain a GPS. Instead I am using one of HTML5’s new features for geo-location. This native

Table 1, A comparison of desktop mapping applications

16

feature can approximate your location by using information data from a variety of sources such as

Wi-Fi triangulation and your IP address to calculate a rough approximation.

The code below shows how to use HTML5’s geo-location feature is implemented and how to extract

the latitude and longitude to display as a map marker for Google Maps.

navigator.geolocation.getCurrentPosition(function(position) {
var pos = new google.maps.LatLng(position.coords.latitude,
position.coords.longitude);

 var marker = new google.maps.Marker({
 position: pos,
 map: map
 });
});

A large number of map markers were then also added to the map in several randomly generated

locations to represent the positions of employees in the company (dummy data). One of the

requirements was to enable grouping of markers by role/skills. In order to do this, the same map

marker image was used on different locations on the map but the colour was changed to represent

different groupings. Each of these groupings were placed inside their own array, which represented

a different group of users. In the future the locations will be retrieved from the Opus database,

which will then need to be geocoded into a latitude and longitude to display on the map. Secondly as

opposed to having hardcoded arrays for each group of users – a better solution would need to be

looked at such as giving each marker its own class or by iterating through a single unbounded set of

points so there is no limit on the number of group of users that can be placed on the map (as

currently the limit depends on the number of arrays created).

I then added checkboxes which had JavaScript events attached to them to toggle the visibility of the

map markers to show and hide these different groups on the map. One of the issues that was then

realized was something that I initially anticipated. With multiple markers in one area, it was hard to

see where the points actually were, so we would need some form of clustering.

Google Maps did not come with a standard method to cluster markers together. However there is an

open source utility library for Google Maps, that I added to the project that added the ability to

Figure 13, The map after implementing clustering. Figure 14, The standard map without using clustering

17

cluster objects. The image above to the left shows the map without any clustering, and the right

image shows the map once all clustering was enabled on all three sets of data. The numbers inside

each icon represent the number of markers in that cluster. A yellow cluster indicates 10+ people.

The last map functionality added the search with the geocoding capabilities was added. This allowed

a user to search for a location, which would be converted into a longitude and latitude that would

then be displayed on the map. The textbox followed the style of previous input boxes being a big size

with large font. Implementation on how to use Google’s geocoding service was used is below.

geocoder.geocode({
 'address': address
}, function(results, status) {
 if (status == google.maps.GeocoderStatus.OK) {
 //do action
 }
});

Along with those core features mentioned above, other little frills were added such as animations on

pin drops, popup information boxes on clicking a map marker and basic error handling. The final

maps page design is below. Note – the reason the map is not themed with the proposed theme, is

because the map isn’t accessed directly (for now at least). Instead it’s viewed by accessing it from

the profile page which opens in a lightbox over the page.

Profile & Profile Management:

The profile page is one of the most deceptive pages in the proposed redesign. Despite looking like

not much has been changed, beneath the surface there have been a lot of functional changes

completed in the hope of enhancing usability and user experience. The profile page has to display

the following information: Users name, qualifications, job titles, address, phone numbers, email and

roles and responsibilities.

Figure 15, Screenshot of the final maps application page

18

One of the biggest challenges with Opus’s

current profile system, is managing ones

profile. The page that is used to edit a profile

is overly complicated. Figure 16 on the left

shows a screenshot from the editing page.

There are an excessive number of fields and

the overall layout is very crammed and

displeasing. Also all the input fields for text

were only textboxes, dropdown menus were

not being used anywhere, which for data

validation and data aggregation is quite bad.

One user may call themselves a Structural

Engineer whilst another may say Engineer –

Structural. Although they both have the same

meaning, they will be seen as two different

things by the database. So some form of

validation needs to be implemented. An

alternate to a dropdown, is an autocomplete

box. It could be used in order to allow users

to select on option from a predetermined set

of data for better validation.

I started to look up different options of input

boxes that could help with data validation. To

achieve autocomplete and responsive input boxes, the choice to go with JQuery since it would be a

good choice to use for something like an autocomplete that needs quick, dynamic and responsive

results. What I also saw was that there were a lot of autocomplete/dropdown plugins that were

using JQuery, so I decided to try out some to see which works best.

There were four types of autocomplete/dropdown menus (Figure 17) that I put together on one

page. They all had the basic functionality required, but were slightly different such as having

different styles or the ability to select multiple items vs. single items. I showed all these four to my

academic supervisor, and there seemed to be an obvious choice between the four. The one selected,

named token-input, can hold multiple values and could easily delete any one of the multiple values.

I had to setup a MySQL database and create a table containing the different types of roles at Opus.

The connection was done via PHP. Since I do not have access to actual data, I gathered this list

through the list of open jobs on the careers page of the Opus website. Once the table was set up the

values were being fetched from the database and fed

into the autocomplete box. To do this I had to set up a

persistent SQL connection with the database.

mysql_pconnect($host, $user, $password);

mysql_select_db($database);

$query = sprintf("SELECT id, name from

roles WHERE name LIKE '%%%s%%' ORDER BY

name DESC",

mysql_real_escape_string($_GET["q"]));
$results = mysql_query($query);

Figure 17, Four of the different auto-complete box
plugins that were contemplated between

Figure 16, A screenshot from the profile edit page

19

After the visual redesign of the profile

page, the next implemented thing was

adding a table for users in the database. I

wanted the data shown on the profile page

to be data that was dynamically retrieved

from the database when the page loads.

Again since I have no access to Opus’s

actual database or servers, this was all

done locally including the connection using

dummy data. The structure of the table

was created, based on the information I

could view from the old profile page, and

from the edit my profile page to figure out

some of the fields that would exist in the database. Figure 18 shows the structure used for the Users

table of the database.

Now all the data displayed on the profile page was being grabbed from the database. I now needed

to implement the profile editing page. As Figure 16 shows, the current editing page had a very

complex look and feel to it. So the goal was to create a way to simplify down the editing process to

the lowest level possible, to make it significantly easier to edit ones profile. The options were:

 To improve on the existing GUI and use the standard form based layout to edit data. This

would mean a user has to navigate to a new page, and they have to find the fields they wish

to edit, change the values in that field and hit save. In the user’s mind there would be some

form of mapping going on such as which field relates to what part of the profile page

 The second option was to implement some form of WYSIWYG editor. This however would

not bring any more simplicity than the standard method of editing forms, and a WYSIWYG

editor leaves the design decisions up to the end user. For example in a rich text box a user

may decide to use a bold green font throughout. This would look unappealing and would

lack consistency between profile pages. Plus the layout of information may be in different

places since the end user now has all this additional flexibility.

 The third option was the one I implemented. This was a feature I created from scratch

which I like to call “double click to edit”.

The double click to edit function, means that a user could double click any text on their profile page,

and the text would then be replaced by a textbox/text-area according to what the context of the

content was. The user could then enter the updated value and click a save button that would appear

next to the textbox. This would require no mapping between text-fields and actual text on the page

(since it is not requiring the user to navigate to another page). It would also act similar to a limited

WYSIWYG editor, except only for changing content and not overall styles.

The feature was initially implemented as being hardcoded, but later this was changed to make it

work more like a library/plugin. I created new HTML tags called <editable></editable> that

wrap around a normal HTML element. The editable tags understand what the context is, by going

through and reading its child nodes (the wrapped content). Depending on what the wrapped

element is, the double clicked content will be replaced with an editable version of the element. Such

as a list will be converted to a token input box (the jQuery library list box), whilst paragraph text will

be replaced with a plain text-area. An example of how to use the editable tags is shown:

Figure 18, The structure of the "Users" table in the MySQL database

20

 A single line text area when the content only contains one line

<EDITABLE id="role">graduate</EDITABLE>

 A multiple line text area when the content contains more than one line

<EDITABLE id="items">line 1
line 2</EDITABLE>

 An inputbox containing list items with when the content contains list items and the

attribute autocomplete is set to off.

<EDITABLE id="fruit">applepear</EDITABLE>

 An inputbox containing list items with autocomplete functionality when the content

contains list items

<EDITABLE id="drinks” autocomplete=”off”>

CokePepsiSprite</EDITABLE>

There are currently some limitations in terms of functionality, since the double click to edit feature

has still not been completed, and there is still room for improvements such as:

 Every editable tag needs a unique

ID which currently has to be the

name of the row in the database

that the information will be saved

in. This is a current limitation, but

however in the future can be

improved on by using a Map or by

saving the information about

which editable field ID’s relate to

which column in the database.

 The second limitation is that

currently, for example the contact

details are all saved in one row.

The telephone, mobile, and fax

number would normally be

separated as different columns

when saved in the database. In the

future this can be improved upon

by Example of how this works is

below.

 Currently there is no way to define

where the source of the

autocomplete is coming from. All

input boxes currently share the same source for auto-complete data. This in future iterations

will need to be solved so that different input boxes can get their data from different sources.

A possible solution may be to make every editable input box that requires autocomplete

have additional parameters in either jQuery or as HTML attributes where you can define the

source of the data.

 Fourthly Editable tags will not work when being wrapped around unordered lists which have

any attribute attached to them. If an unordered list has for example the following attribute

Figure 19, The double click to edit features showing how textboxes
and autocomplete-list boxes are replaced with the text the user
wishes to edit

21

<ul border=”1”> will currently not work. This is due to the way the child nodes are being

parsed when trying to resolve the type of the inner element.

There are most likely other small things which need to be improved on, along with extending

functionality to other HTML elements such as tables, and the ability to replace an image on double

click (such as to change the profile picture), however this prototype shows the possibility of creating

a simplified profile editing system that does not require one to navigate to a new page.

The very simplified jQuery code that allows the editing to work is as follows

//Attach a double click handler to all items which have the editable tag.

 $("editable").dblclick(function(event) {

//If the item is in editable mode already then break here

 if($(this).attr('clicked') == 'true'){ return; }

//Get the content of the double clicked element

 var content = ($(this).html());

//Work out the element type

 if ($(this).children()[0].tagName == “UL”) {

//If a list then split and extract all the list items from the HTML and

//add them to an array else just save the contents

 for (var i = 0; i < listArray.length; i++) {

 items.push(item);

//Replace content with a textarea/listbox and save button and map it to

//appropriate ID/field in the SQL database

 $(this).html("<textarea>" + content + "</textarea>”);

 $(this).append("<input type='save'>");

//Enable the autocomplete Ajax Callback requests to the database

 $('#' + col).tokenInput(<?php echo $json_response;?>, {

//Get the current focused input box and change the size of the input boxes

depending on user input

 $(this).animate({ height:new+"px" },200);

//On save, submit the updated content via Ajax and replace the steps

 $.ajax({
 type: "POST",

 url: "update.php",

//Replace the input boxes back by doing the above steps backwards to

//convert the listbox/texbox objects to HTML code to be displayed.

22

The next step that was completed was adding the

image of a map next to the contact details. The

picture of the map needed to be a visual

representation of the address to the right, so that

map needed to grab that contact address. This

map would show a visual representation of the

address on the right. The feature I felt would be

best for compactness and simplicity is to simply

have an image of the users location on the map

that would be displayed, and upon clicking that

map, the full interactive HTML5 map opens in a

new window/lightbox (rather than embedding a very tiny interactive map on the page). The reason

for this was to ensure speed and responsiveness when loading the profile page, and to hide all the

extra bits of functionality (such as the geocoding search) that exist on the map page already. So

rather than trying to add all the functions of the maps page and place it on to the profile page

(where it would just take up space and may not even be needed) instead I am just showing a simple

image which can be clicked to access the full functionality of the mapping application.

The way the static image is created is by using the Google Maps Static API. The API works by taking

in an address and geocoding it to a latitude and longitude which it displays on the map. The result is

an image that can be embedded by using normal HTML tags.

The code below shows us the call made to Google to retrieve a static image for the address:

100 Beaumont Street, Westhaven, Auckland 1010. Note: to get the address in the right format some

whitespace, newlines and special characters need to be removed. Also the URL will need to be

encoded before making the request.

https://maps.googleapis.com/maps/api/staticmap?

zoom=14&size=300x200&maptype=roadmap&markers=color:red|

address:100 Beaumont Street Westhaven Auckland 1010 New Zealand

Upon clicking this image, the full maps page that was created earlier was to be opened in a new

window. As opposed to opening the maps in a new window, I decided to open it in a lightbox. This

makes it easy for a user to return back to the profile page and to exit from the map quickly without

having to reload the page, or close a new tab or window. Different solutions were looked into for a

lightbox library, and there were many to choose from.

The most popular options were all implemented in jQuery. jQuery LightBox, ColorBox, FancyBox,

ThickBox, OrangeBox and SlimBox. The functionality though differed slightly between all the options.

There were three pieces of functionality that I felt were the main required.

 The ability to embed an iFrame inside the lightbox. This iFrame would be required in order

to open the maps page inside the lightbox.

 Also for the technical funding application (see next section), one of the features that would

be needed planning ahead, is the ability to embed a PDF inside a lightbox

Figure 20, The map image from the profile page. The map is a
dynamically generated image which is created by reading the
contact details from the database and sent via an API to Google
to generate a PNG image that is used on the webpage Clicking
this will open up .

23

 Again planning for ahead, the lightbox should be able to handle images (which is what a

lightbox is designed for)

(Deering, 2011) had a quick comparison between

different libraries in which he states the differences

between the lightbox libraries are minimal, and your

selection should be based upon the optional extras

and customizability you require. Between all the

available libraries, Thickbox can view PDF’s in iFrames,

but you will still need to implement some PDF viewer

yourself for those browsers that do not support it.

OrangeBox and FancyBox both could support PDF’s

natively. The rest were ruled out since they could not

display inline PDF’s. Both could also support iFrames

and images. The deciding factor between the two

options was that FancyBox was not free for

commercial use, whereas OrangeBox was – therefore

the lightbox library chosen was OrangeBox.

To get the lightbox to show the correct location upon

opening it, data had to be sent from the profile page

to the inline iFrame. This was done by using HTTP GET

method implemented in PHP. The address was copied

from the “Contact Details” paragraph using jQuery, and was sent over the URL to the maps page.

The maps page received the information, and geocoded the address to a latitude and longitude.

Then a new map marker was created at that latitude and longitude with an information box above

showing the address text and the map was centered around it. The OrangeBox plugin also needed to

be tweaked. Although I wanted to keep the plugin native, I could not find a way at the time to allow

the lightbox iFrame to update without having to modify the plugin files.

Combining both the functionality to double click to edit and the static map together required a little

bit more to be done in order to get them working together. In the scenario a user double clicks to

change their location, we would also like the static map to be updated to the entered location. In

order to do this we need to get the new value entered, and change the Image ref to contain the new

address. So two steps needed to be added to the double click handling process on Figure 21 above

//If the address has changed, then update the static Google map image.

 $map.href = $url + encodeURIComponent($new_address);

//Execute the OrangeBox script again to update link references.

 head.appendChild("orangebox.js");

Now the last change to the profile page was to fix an inconvenience. When a user double clicked a

paragraph of text, the text was replaced by a text-area. The text-area created had a height that fit

perfectly to the paragraph it replaced. The problem was however when a user entered a new line,

the text area size would stay the same, so a vertical scrollbar would appear. Although being a small

issue, upon using the double click to edit feature many times myself – I realized how annoying this

could be. In order to solve this problem I looked at a solution of making the textbox grow or shrink

depending on whether you add a new line or delete a new line.

Figure 21, The lighbox library - OrangeBox as
implemented on the profile page to display a popup
modal window of the interactive map.

24

There were already existing plugins available for this, however for some reason they were all very

large in size. autogrow.js takes up over 120 lines, Autogrow-TextArea was almost 100 lines without

any animations, and the most popular, Jack Moore’s AutoGrow over 270 lines. I felt I could

implement this myself in a shorter way including animations. I implemented my own solution with

12 lines with one statement per line including the JQuery event handling. It accomplishes the same

job in a much simpler way by using some math and matching the special new line characters, to

calculate what the height should be based on the font size and the line-height after every key stroke.

Upon adding a new line, the textbox animates and “grows”, while it “shrinks” on deleting one.

Technical Funding:

Every year, employees of the company apply for funding for the projects they are working on. These

can be small applications with low budget requirements, to projects that depend heavily on funding.

Every application has to be filled out using an online form. This form is not easy to use and one user

even pointed out without even me asking, that they did not fill up the form themselves since the

application process didn’t work for them.

All applications have to include a project director, manager, a budget, the country the project is

being worked on, the completion date of the project and a PDF with further details about the project

itself. In the back end of the system the data is aggregated by hand. Someone manually creates an

excel spreadsheet after accumulating all the information entered from all the applications at the end

of every year. There is also a time delay between when all the applications are submitted to when

the excel spreadsheet is created. My academic supervisor who then sees these applications has to

wait and rely on someone else to create the spreadsheet and send it to them.

The first part of my solution involved redesigning the application form online. To do this I created

basic fields in HTML all designed with usability in mind. I took advantage of new HTML5 form input

types and functions to provide better control and validation (W3Schools). The reason for this is to try

and improve on the usability, since users will receive appropriate feedback upon performing actions.

Some of the feedback shown is e.g. by entering letters in a “number” field will highlight the textbox

red telling the user something is incorrect. Or by being shown a date picker modal box when

entering a date, and receiving messages about required input boxes when they have been left blank.

Standard conventions have also been used along with these such as red highlights for

incorrectly/blank fields and green highlights for correctly entered fields.

For the design aspect I am using large textboxes with large padding, width and a bigger font-size. The

goal is to make the application process as easy as possible and to retain focus on the content

entered on the input fields. The bigger font and input boxes are an attempt to stand out, and ensure

focus is retained on those elements and also follows this pattern used by many larger websites

which also follows modern design conventions as seen in the top websites.

I have used a combination of Ajax and PHP to process the forms contents. Although HTML already

handles some errors such as blank fields - some additional error handling had to also be

implemented. Upon submitting the form, the contents are grabbed and are sent via POST to a PHP

page using Ajax. The PHP page processes the data by first looking at the attachment. It checks the

file size to see if it’s less than 20MB, and then the extension to ensure it is only a PDF file and

nothing else. Whilst this is happening I created a custom animated loading screen using purely CSS

and an animated GIF (red - to suit the Opus colours), that fades in to look like a lightbox (overlay on

the webpage where the webpage is dimmed out) as seen on the next page in Figure 22.

25

After the PHP page has processed the form content it will send a call back to the Ajax function telling

it whether it could successfully save the form in the SQL database or whether an error occurred. An

error could occur due to the file size being too big, the extension not being a PDF or other reasons

such as it could not simply connect to the database (Figure 23). Whatever the reason, a custom

modal box which I created using purely CSS is transitioned on screen in either a red colour with the

appropriate error message, or in a green colour saying the application was successfully submitted.

This whole process happens on the one page for the user – and if an error message is sent back then

none of the fields of the form are cleared. This allows the user to simply edit the incorrect data

rather than having to await a page refresh and possibly having to enter all the information again.

All of the above functionality was my

implementation/possible solution for the

front-end process on submitting a technical

funding application. The second problem

which was faced by my supervisor was the

fact that all this data needed to be

aggregated somehow. Until now someone

had to manually do this aggregation and had

to manually create a spread-sheet from this

information and send it along with all the

individual project PDFs to my supervisor.

The front-end system saves all the

information in a MySQL database. The data

is saved in its own applications table which

does not need to be directly accessed.

Instead I have created a basic management

panel to view all the applications (which in

Figure 22, The final application form for technical funding showing
validation and an example message and highlighted textbox when
leaving a field empty

Figure 24, Custom animated loading screen created
using purely CSS and images

Figure 24, Example of a CSS modal box appearing on
invalid file type input

26

the future will only be accessible by my supervisor or anyone with permissions).

The management (administration) panel uses primarily JQuery and HTML5 to display the application

information. I am also using to libraries for JQuery which I have customised to work with a SQL

database. The first is called Flot which is a plotting library for creating different types of graphs. And

the second is DataTables which is used for enhancing standard HTML5 tables.

Upon visiting the management panel,

one can view graphs about all the

applications that have been submitted

till date. To do this I had to first make a

connection to retrieve the applications

table from the SQL database, then to

convert each of the rows into an array of

objects into a format that could be

understood by the Flot Library. With

some additional parameters and

information Flot then outputs a HTML5

canvas which contains a graphed version

of the inputted data. I am using bar

graphs and pie graphs because for this

application they are useful at displaying

a large amount of data in a relatively

simple manner.

There were many libraries available for

plotting over many different languages.

JavaScript/JQuery again seemed like a

good choice as it is a web language that

will fit well with all the other pages I have

created so far which also are strongly linked with JavaScript and JQuery. Also JavaScript is highly

responsive and interactive, which is ideal for viewing graphs online as users can interact with it. A

comparison of JavaScript graphing engines was done by (Whelan, 2010) and by (Social Compare,

2014). Despite all libraries having their differences most of the graphing software will cover the basic

functions needed to generate graphs. The best libraries seemed to be HighCharts, D3 and Flot

because of their customisability and resultant output – that for all three were much more

aesthetically pleasing than the others. HighCharts seemed to be the best choice – except it costs

from $90 – $3600 to use for commercial organisations whilst D3 and Flot were the free options. D3’s

output charts seemed to be more for complex data analysis and seemed too complex and contained

too much information compared to what was required for this application – where simplicity and

usability triumphs over the amount of functions the program contains. Therefore I chose Flot as the

library to use.

The resultant design of the graphs is mostly standard to what comes default with the program.

Labels for each slice of the pie chart were added along with the mouse over function to view the

percentages in the bottom right corner to view information that may not fit or be obscured due to

being very small slices in the pie chart. Secondly multiple graphs were added so the same

information can be viewed and grouped by different criteria. Along with the pie graphs a simple bar

graph was also created to view the budget required by each project.

Figure 25, The management panel for technical funding
applications, showing pie graphs created using the Flot library

27

Graphs are great to get an overview of

information in a small amount of time.

However in this scenario it would also

be handy to view information about

each individual project so it can be

dealt with accordingly. A table with all

the information would be a solution to

be able to view all the information

about each application. Unlike with

the graphing applications where there

the usage of each library was strongly

spread, with tables there were two

main plugins that the majority of users

seemed to use (Kumar, 2011).

DataTables and JQGrid.

Despite doing the same job – the

libraries differed significantly on how

they work. DataTables work simply by creating a normal Table in HTML and the library then uses

JavaScript and CSS to modify the table to give it the additional functionality and styling automatically

such as the odd-even row colouring and the ability to limit the number of rows per page. JQGrid on

the other hand required passing in data through a source such as JSON/XML without you having to

do the HTML structure yourself. Both options had extensive

support and documentation, but for commercial usage, JQGrid

required a licence which costs $299 – thus DataTables was the

option I used. Figure 26 shows the implementation of

DataTables in the management section. The OrangeBox plugin

was also used to be able to view any PDFs that were attached

with a funding application in a lightbox on the same page itself.

This meant a user did not have to navigate away to a new tab in

order to view a PDF attachment, and to go back they could

simply close the lightbox allowing easy reversal or actions.

Since graphs would also be printed out, an adjustment that was

done was to ensure that all the content will fit and look good

when the page is printed. CSS allows you to specify the layout

of your pages when printing to ensure a printer-friendly format

using the @media rule. The left figure shows the how the

graphic page appears when printing. Note that the navigation,

background images and shadows are all removed in the printing

process and only the graphs and tables are being printed out.

Finally upon completing the design and functionality, the last

step was ensuring cross-browser compatibility. This mean

adding extra CSS rules to ensure that the website appears to be the same when viewed on all

browsers. The changes were mostly to make sure the design worked in Internet Explorer.

Figure 26, The overview of technical funding applications as shown using
the DataTables library

Figure 27, A print preview of the
technical funding management panel

28

The screenshots below show the same webpage viewed in multiple browsers along with the editing

mode enabled of the roles of the user.

Conclusion

The above project is just the progress on my goal of enhancing Opus’s intranet system’s usability and

user experience. The changes I have made so far have been based upon the research I have

conducted so far, and what I feel will be a design that enhances user experience. Since design is very

subjective, I cannot be sure whether my proposed solution will improve, worsen or affect the

usability and user experience at all. In the future I will need to conduct some tests to see whether

my proposed solution, does in fact improve upon the existing system. Along with the changes, the

biggest issue that I will face (if it happens) will be the migration of my changes on to the live intranet

system. However this is all dependant on the IT team of Opus. This is just the start to my proposed

solution and I will be continuing to work on adding functionality and altering the design to hopefully

improve usability and create a better user experience.

Figure 28, The proposed design of the profile page as viewed in (from left to right) Safari 5.1, Internet Explorer 9, Mozilla
Firefox 30, Google Chrome 36

29

Bibliography
Alexa. (2014). The top 500 sites on the web. Retrieved from Alexa: http://www.alexa.com/topsites

Bevan, N. (2009). Wha is the difference between the purpose of usablity and user experience

evaluation methods? Uppalsa: INTERACT.

BuiltWith. (2014, August 4). Mapping Usage Statistics. Retrieved from BuiltWith:

http://trends.builtwith.com/mapping#

Campbell, J., & Shelly, G. B. (2014). Web Design: Introductory. Course Technology.

Carlos, G. (2013). Responsive Web Design with jQuery. Packt Publishing.

Cipeluch, B., Jacob, R., Winstanley, A., & Mooney, P. (2011). Comparison of the accuracy of

OpenStreetMap for Ireland with Google Maps and Bing Maps. Dublin: Environmental

Research Center Environmental Protection Agency.

Davison, N. (n.d.). Liquidapsive (Liqui-dap-sive). Retrieved from Liquidapsive (Liqui-dap-sive):

http://liquidapsive.com/

Deering, S. (2011, November 17). JQuery LightBox vs. ColorBox vs. FancyBox vs. ThickBox - What are

the key differences? Retrieved from SitePoint: http://www.sitepoint.com/jquery-lightbox-

colorbox-fancybox-thickbox/

Falagas, M. E., Eleni, P. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web

of Science, and Google Scholar: strengths and weaknesses. The FASEB Journal, 338-342.

Google. (2014, Auguest 1). FAQ. Retrieved from Google Maps API:

https://developers.google.com/maps/faq#usagelimits

Hinchliffe, A., & Mummery, W. K. (2008). Applying usability testing techniques to improve a health

promotion website. Journal of Austria 19, 29-35.

Kumar, A. (2011, October 5). Two Best Display Components :JqGrid And Datatables.Net. Retrieved

from MSGuy: http://www.msguy.com/2011/10/two-best-display-components-jqgrid-

and.html

Lal, R. (2013). Digital Design Essentials: 100 Ways to Design Better Desktop, Web, and Mobile

Interfaces. Beverly: Rockport Publishers.

McNamara, N., & Kirakowski, J. (2006). Functionality, usability, and user experience: three areas of

concern. Magazine Interactions - Waits & Measures, Volume 13 Issue 6, 26-28.

Nielsen, J. (2003). Usability 101: Introduction to Usability. Jakob Nielsen on Usability and Web

Design.

Nielsen, J., & Molich, R. (1990). Heuristic evaluation of user interfaces. ACM CHI'90 Conference. , (pp.

249-256). Seattle.

O'Reilly, T. (2005, September 30). What is Web 2.0. Retrieved from O'Reily:

http://oreilly.com/web2/archive/what-is-web-20.html

Pozin, I. (2014, May 15). Let It Go: Say Farewell To These 5 Web Design Trends. Retrieved from

Forbes: http://www.forbes.com/sites/ilyapozin/2014/05/15/let-it-go-say-farewell-to-these-

5-web-design-trends/

30

Shneiderman, B., & Plaisant, C. (2010). Designing the User Interface: Strategies for Effective Human-

Computer Interaction:. Reading: Addison-Wesley Publ. Co.

Social Compare. (2014, July 22). Javascript Graphs and Chart Libraries. Retrieved from Social

Compare: http://socialcompare.com/en/comparison/javascript-graphs-and-charts-libraries

Turner, A. L. (2014, March 19). The history of flat design: How efficiency and minimalism turned the

digital world flat. Retrieved from The Next Web:

http://thenextweb.com/dd/2014/03/19/history-flat-design-efficiency-minimalism-made-

digital-world-flat/4/

W3Schools. (n.d.). CSS Safe Web Fonts. Retrieved from W3Schools:

http://www.w3schools.com/cssref/css_websafe_fonts.asp

W3Schools. (n.d.). HTML5 Input Types. Retrieved from W3 Schools:

http://www.w3schools.com/html/html5_form_input_types.asp

Whelan, P. (2010, December 3). Highchart Vs Flot.js - Comparing Javascript Graphing Engines.

Retrieved from Big Fast Blog: http://www.bigfastblog.com/highchart-vs-flot-js-comparing-

javascript-graphing-engines

